Titre du document

The dark side of the universe: from Zwicky to accelerated expansion

Lien vers le document
Nom du Corpus

AstroConcepts

Auteur(s)
  • Michael S Turner
Affiliation(s)
  • Departments of Astronomy & Astrophysics and of Physics, Enrico Fermi Institute, The University of Chicago, 5640 So. Ellis Avenue, Chicago, IL 60637-1433, USA
  • NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Box 500, Batavia, IL 60510-0500, USA
  • Correspondence address: Departments of Astronomy & Astrophysics and of Physics, Enrico Fermi Institute, The University of Chicago, 5640 So. Ellis Avenue, Chicago, IL 60637-1433, USA
Résumé

More than 60 years ago Zwicky made the case that the great clusters of galaxies are held together by the gravitational force of unseen (dark) matter. Today, the case is stronger and more precise: dark, nonbaryonic matter accounts for 30±7% of the critical mass density, with baryons (most of which are dark) contributing only 4.5±1% of the critical density. The large-scale structure that exists in the universe indicates that the bulk of the nonbaryonic dark matter must be cold (slowly moving particles). The SuperKamiokande detection of neutrino oscillations shows that particle dark matter, in the form of massive neutrinos, actually exists and accounts for as much mass as bright stars. An important threshold has been crossed; particle dark matter is no longer hypothetical. Over the past few years a case has developed for dark energy. This dark, relativistic component contributes about 80±20% of the critical density and is characterized by very negative pressure (pX<?0.6?X). Consistent with this picture of dark energy and dark matter are measurements of CMB anisotropy that indicate that matter and energy together account for the critical density (within 10%). Fundamental physics beyond the standard model is implicated in both the dark matter and dark energy puzzles: new fundamental particles (e.g., axion or neutralino) and new forms of relativistic energy (e.g., vacuum energy or a light scalar field). Dark matter and dark energy are central issues in both cosmology and particle physics. Over the next two decades a flood of precision cosmological observations and laboratory experiments will shed light on the dark side of the universe. As they do they will advance our understanding of both the universe and the laws of physics that govern it.

Langue(s) du document
Anglais
Année de publication
2000
Revue

Physics Reports

Éditeur
Elsevier
Type de publication
journal
Type de document
article
Présence de XML structuré
Oui
Version de PDF
1.2
Score de qualité du texte
10
Nom du concept
  • Dark energy
Mots-clés d’auteur
  • 9.80.Cq
  • 95.30.Cq
  • 98.80.?k
Catégories Science-Metrix
  • 1 - natural sciences ; 2 - physics & astronomy ; 3 - nuclear & particles physics
Catégories Inist
  • 1 - sciences appliquees, technologies et medecines ; 2 - sciences exactes et technologie ; 3 - terre, ocean, espace ; 4 - astronomie
Catégories Scopus
  • 1 - Physical Sciences ; 2 - Physics and Astronomy ; 3 - General Physics and Astronomy
Catégories WoS
  • 1 - science ; 2 - physics, multidisciplinary
Identifiant ISTEX
FB65B179C85DFF30EF76C12CD060249CFE8E6B70
ark:/67375/6H6-8T109P0Z-9
Powered by Lodex 9.4.5