Titre du document

Accretion and electrostatic interaction of interstellar dust grains; Interstellar grit

Lien vers le document
Nom du Corpus


  • Paul S. Wesson
  • St. John's College, Cambridge, England

This work is divided into 13 sections and 2 appendices, and aims to elucidate the accretion mechanism, which operates via image-theory forces, whenever two interstellar dust grains come close together. Section 1 is an introduction. Section 2 proposes that the distribution of interstellar grains be taken asn(r) ?r ?4 to avoid distortion of the 3K microwave background by radiation from spinning grains. Section 3 examines each of three types of image force accretion processes, finding them to be dominant compared to radiation or gravitational forces by at least a factor of 1019. Section 4 states that only grains made of conducting material (e.g., graphite, ice, iron) are involved in image theory. Section 5 presents reasons for believing that two grains should coalesce on impact. Section 6 examines the motion of charged interstellar grains in Hi and Hii regions. Section 7 demonstrates, by way of four examples involving dust grains ofr=10?7 cm up tor=10?4 cm, that the image effects on conducting grains are not trivial, and that the dynamics involved is not to be compared at all with elementary Coulomb interaction of two changes. Section 8 concludes that accretion with not take place in Hi clouds if thermal (equipartition) velocities prevail among the dust particles. section 9 examines grain interactions in Hii regions: here, following an argument due to Spitzer, consideration is given to the case of a population of dust grains all streaming in the direction of the local magnetic field B at velocities of order 0.1 km s?1. It is shown that accretion takes place effectively, leading to the formation of interstellar ‘grit’, meaning grains of mass 10?8 to 10?7 gm, radius ? 0.1 mm; and leaving also a population ofr?10?6 cm grains, which are observed in polarization and extinction measurements. The existence of the latter is now a deduction and not an ad hoc postulate, as previously, and implies a distribution of the general formn(r) ?r mean ?3 , in approximate agreement with that of Section 2. Section 10 considers the accretion mechanism as a cascade process. Section 11 shows that the existence of grains in space ofr ? 10?6 cm rules out an origin in supernova or galactic explosions, and supports a passive origin, perhaps in red giants or Mira variables. Section 12 discusses the implications of the results found for polarization observations and cosmogony, the latter being given a new foundation in which planets of different composition form automatically from a solar nebula. Section 13 is a conclusion.

Langue(s) du document
Année de publication

Astrophysics and Space Science

Springer (journals)
Type de publication
Type de document
Présence de XML structuré
Version de PDF
Score de qualité du texte
Nom du concept
  • Bok globules
Catégories Science-Metrix
  • 1 - natural sciences ; 2 - physics & astronomy ; 3 - astronomy & astrophysics
Catégories Inist
  • 1 - sciences appliquees, technologies et medecines ; 2 - sciences biologiques et medicales ; 3 - sciences biologiques fondamentales et appliquees. psychologie ; 4 - biophysique moleculaire
Catégories Scopus
  • 1 - Physical Sciences ; 2 - Earth and Planetary Sciences ; 3 - Space and Planetary Science
  • 1 - Physical Sciences ; 2 - Physics and Astronomy ; 3 - Astronomy and Astrophysics
Catégories WoS
  • 1 - science ; 2 - astronomy & astrophysics
Identifiant ISTEX
Powered by Lodex 9.4.5